Elements of T-NAMA MRV

Alvin Mejia

Program Manager
Low Emissions Urban Development
Clean Air Asia

GIZ ASEAN Regional In-depth discussion event on MRV for Transport NAMAs
Ha Long City, Vietnam
2 October 2014

Clean Air Asia leads efforts to enable Asia's

1,000[†] CITIES

to reduce both air pollution and CO₂ emissions, and thereby contribute to more livable and healthy cities with blue skies and a low carbon footprint. Emissions can be reduced through policies, plans, programs, and concrete measures that cover air quality, transport and industrial emissions, and energy use.

Decision makers use reliable analysis, knowledge, data and effective tools to understand the program and identify solutions.

Stakeholders at the city, national and regional level cooperate better through networks and partnerships.

Policies and programs are in place that are science-based, stakeholder-inclusive and effective.

MRV of Transport NAMAs

Domestic MRV Guidelines:

"general, voluntary, pragmatic, nonprescriptive, non-intrusive and countrydriven, take into account national circumstances and national priorities, respect the diversity of nationally appropriate mitigation actions, build on existing domestic systems and capacities, recognize existing domestic measurement, reporting and verification systems and promote a cost-effective approach." In-line with the priorities of the country (and/or locality)

MRV Systems

Rationale for MRV

Challenges in T-NAMA MRV

- Unique nature of mobile sources of emissions in the transport sector
- Complexity and cost of data collection methods
- Lack of clear definitions
- No institutionalized data collection
- At this stage, TNAMAs can take different forms, non-GHG priorities can also be different → difficulties in pinning down indicators
- Lack of Cause-impact analysis guidance

The Unique-ness of NAMAs

Transport-related priorities can include environmental, economic and social dimensions and can come in different forms

Monitoring non-GHG impacts (positive and negative) pose additional challenges (as well as opportunities) to tNAMAs

Transformational NAMAs

CO2 Impacts: BAU vs Mitigation (NAMA) Scenario

General Estimation Approaches: CO2

Advantages and Disadvantages

Top-down approach

- +
- probability of data being available
- consistency in data collection

- low level of detail
- limitations in assessing specific interventions

National GHG inventories

Bottom-up approach

- +
- more detailed information allows better analysis of interventions
- Enables analysis of other co-benefits

-
- time and costs in data collection
- standardized procedures for collecting specific data may not be available

NAMAs

Top Down

Fraction of fuel oxidized (%)

Total Energy consumed (TJ)

Total CO2 emissions (tonsCO2)

Energy
contained in
fuel
(MJ/kg of fuel)

Carbon content per energy unit (ton Carbon/TJ)

Carbon to CO2 converter (44/12)

Top Down (2) -Simplified

CO2 Emission Factor per amount of fuel consumed (e.g. kgCO2/liter of gasoline)

- Tells you how much CO2 is emitted
- Doesn't tell you much about the sources
- Doesn't enable mitigation impacts analysis of interventions

Bottom-up

A Transportation Activity Structure of the transportation system Intensity of the transportation modes **Emission Factors**

CO2 Emissions

Fitting ASIF

Activity

(Total Passenger-km or ton-km)

Structure

(% of PKM, TKM done by the different modes of transport)

Modal Energy Intensity

(person kilometer/unit of energy)

Occupancies; average energy efficiencies (km/liter); fleet composition

Energy content of fuels

Total CO2 Emissions (kgCO2)

Factor of Emissions

(e.g. kgCO2/liter of gasoline)

Area	Data Type	Data Usage	Sources
Fuels	Fuel quantity Fuel type	Inventory, top-down GHG calculation, national reports	Tax base (quantities and types) and fuel regulations
Vobieles	Fuel quality		Vehicle registration systems webicle toy
Vehicles	Number of vehicles per category age structure	Inventory, top-down GHG calculation, national reports	Vehicle registration systems, vehicle tax collection, specific surveys (e.g. mileage)
	annual mileage emission category		
Emission Factors	Fuel consumption Emission factors	CO2 per km per vehicle category Impact of measures to improve transit	Vehicle registration, modelling, sampling studies, company statistics
Modes	Occupation rates / average trip distance Trip share per mode (as % of trip distance)	CO2 per PKM per vehicle category	Surveys (passengers and/or households), traffic studies, visual observation studies
	Trip share per mode baseline	Impact of measures to shift transit	Modelling or surveys for baseline
Trips	Trip distance per mode per annum per inhabitant	gCO2 for transit per inhabitant	Household surveys, traffic observation
	Trips baseline	Impact of measures to avoid transit	Modelling or surveys for baseline
SD	Air quality Time required for transit Accident, mortality and morbidity rate transit Health costs air pollution Income/wealth distribution impact	SD impact of measures	Measurements, surveys, traffic observation studies, modelling

Source: PMR Columbia, 2014 as quoted in the powerpoint presentation by GIZ TRANSfer Colombia. MRV of NAMAs and the case of the Colombian Freight NAMA

Data Access

Source: CAI-Asia. 2010. Availability, quality and use of transport and energy data in Asia: A regional case study. Presented by Patdu, K. at the Better Air Quality Conference 2010 held in Singapore, 9-11 November 2010. Available: http://baq2010.org/node/1497

Overview of Data Availability of Input Parameters for Each Country

Data Requirements for Estimating Emissions from Road Transport			BAN	IND	INO	LAO	MAL	NEP	PAK	PHI	PRC	SIN	SRI	THA	VIE	
			2W													
Activity			3W		_											
	Vehicle	l	PC		-											
	kilometer	By vehicle type	MUV					-								
ţ	travelled	-,,,,	Bus					_								
' '		l	LCV		-			_								
		l	HCV		_			_								
-			2W													
		l	3W		_			_			_					
		l	PC		_											
		By vehicle type	MUV					_								
		by remain type	Bus					_							-	
		l	LCV		_			_							-	
		l	HCV		_			_					_		-	
2			Gasoline												-	
Structure	Vehicle		Diesel													
ž	population	By vehicle-fuel	LPG												\vdash	
š		type	CNG		_					-					-	
			Electric		_										-	
			Pre-Euro					-							-	
		l	Euro 1		-			-							$\boldsymbol{\vdash}$	$\boldsymbol{\vdash}$
ı		By technology type	Euro 2		-			-				-			-	-
			Euro 3 or		-			-					_		-	-
			above													
-			2W		_								_		-	
		By vehicle type	3W		-			_							\vdash	
			PC	_	-					-					-	
			MUV					-							\vdash	\blacksquare
			Bus	_	_			-		-			_		-	
	Average fuel		LCV		-			-							-	$\boldsymbol{\vdash}$
			HCV		-			-							-	-
	efficiency	By vehicle-fuel type	Gasoline		-			-		-		-			\vdash	\blacksquare
2			Diesel													
1			LPG													
Intensity			CNG													
2					-			_				-	_		-	-
			Electric 2W													
		I	3W													
																ш
	Occupancy	Burnshirds to see	PC													
	Loading		MUV													
			Bus													
			LCV													
\vdash			HCV													
Fuel	Fuel	Emission factor														
Œ.	Characteristics	Biofuel blend														
L.	Characteristics	Biofuel blend														L

Impacts Measurement: Timing

- Establish BAU emissions
- Inform intervention selection
- Inform reduction goals
- Attract financial support

Ex-ante estimation

- What is the potential emissions reduction impact of the intervention?
- Baseline study needed

Evaluate intervention effectiveness

- Meet funder requirements
- Improve intervention design

Monitoring and Ex-post evaluation

Start of intervention

- Is the intervention delivering the emission reduction as expected? Why?
- Monitoring plan and actual monitoring

Ex-post

Is the intervention delivering the emissions reductions that it has promised?

Data to be monitored:

- -What
- -Why
- -When
- -Where
- -How

	TransMilenio Phase II to IV									
	Monitori	ng 2006	Monitor	ing 2008	Monito	ring 2009	Monitoring 2010			
	Actual	Actual Expected		Actual Expected		Expected	Actual	Expected		
Passengers transported by project (million)	94	147	118	356	134	478	149	478		
Share of passengers which would have used passenger cars (%)	4.3	5.5	2.4	5.5	2.1	5.5	2.6	5.5		
Share of passengers which would have used taxis (%)	5.5	5.6	5.5	5.6	4.8	5.6	5	5.6		
Share of passengers which would have used buses (%)	89.1	88	91.4	88	92.5	88	91.6	88		
Share of passengers which would have used NMT or not made the trip (%)	1.1	0.8	0.7	0.8	0.6	0.8	0.7	0.8		
Emission reductions	-40%		-7	0%	-7	4%	-74%			

BRT Bogotá, Colombia: TransMilenio Phase II To IV (monitoring report 2010)

Construction and Operations (% of total CO2 footprint of projects)

ASI and **ASIF**: General Relationships

ASIF Approach Enables Co-benefits Analysis

Hard to

measure

 The data needed for calculating CO2 impacts can be used in analyzing other cobenefits

Easy to measure

Direct benefits

Life-cycle benefits and trade-offs Secondary Co-benefits · Reduced health costs due to air pollution and increased **Primary Co-benefits** physical exercise) Increased productivity Reduced other pollution (soil through time savings and water contamination, Reduced HG emissions waste etc) Reduced air emissions Reduced noise levels Improved equity Improved safety · Reduced fuel subsidies paid by government **Benefits** · Reduced traffic congestion Reduced vehicle operating costs Indirect

benefits

CDM: BRT — Bogota Transmilenio

	TransMilenio Phase II to IV									
	Monitor	ing 2006	Monitor	ring 2008	Monito	ring 2009	Monitoring 2010			
	Actual Expected		Actual	Expected	Actual	Expected	Actual	Expected		
Passengers transported by project (million)	94	147	118	356	134	478	149	478		
Share of passengers which would have used passenger cars (%)	4.3	5.5	2.4	5.5	2.1	5.5	2.6	5.5		
Share of passengers which would have used taxis (%)	5.5	5.6	5.5	5.6	4.8	5.6	5	5.6		
Share of passengers which would have used buses (%)	89.1	88	91.4	88	92.5	88	91.6	88		
Share of passengers which would have used NMT or not made the trip (%)	1.1	0.8	0.7	0.8	0.6	0.8	0.7	0.8		
Emission reductions	-40%		-7	0%	-7	4%	-74%			

BRT Bogotá, Colombia: TransMilenio Phase II To IV (monitoring report 2010)

Summary

- Maximize the opportunities presented by the NAMAs to build capacity on MRV
- Collective knowledge sharing is important for developing countries
- Build on existing resources
- Low cost data collection methods must be explored (maximize the opportunities brought by modern technologies)
- Clear guidance on how to go about MRVing at different stages is needed
- MRV of NAMAs is also nationally-appropriate
- Flexibility to achieve balance (robustness of MRV, feasibility of MRV)

For more information: www.cleanairasia.org

alvin.mejia@cleanairasia.org

Clean Air Asia China Office

china@cleanairasia.org
901A Reignwood Building,
No. 8 YongAnDongLi
Jianguomenwai Avenue Beijing
China

Clean Air Asia Center

center@cleanairasia.org
Unit 3505 Robinsons Equitable Tower
ADB Avenue, Pasig City
Metro Manila 1605
Philippines

Clean Air Asia India Office

india@cleanairasia.org
1st Floor, Building No. 4
Thyagraj Nagar Market, Lodhi Colony
New Delhi 110003
India

Clean Air Asia Country Networks

China • India • Indonesia • Nepal • Pakistan • Philippines • Sri Lanka • Vietnam

Clean Air Asia Center Members

- •Shell
- Asia Clean Fuels Association
- Corning

240 Clean Air Asia Partnership Members

- Cities
- Environment ministries and government agencies
- Development agencies and foundations
- Non-government organizations
- Academic and research institutions
- Private sector companies and associations

Donors in 2012 to 2013

Asian Development Bank • Cities Development Initiative for Asia • ClimateWorks Foundation • DHL/IKEA/UPS • Energy Foundation • Fredskorpset Norway • Fu Tak lam Foundation • German International Cooperation (GIZ) • Institute for Global Environmental Strategies (IGES) • Institute for Transport Policy Studies • Institute for Transportation and Development Policy • International Union for Conservation of Nature • L'Agence Française de Développement (AFD) • MAHA • Pilipinas Shell • Rockefeller Brothers Fund • Shakti Foundation • Shell Foundation • United Nations Environment Program Partnership for Clean Fuels and Vehicles (UNEP PCFV) • USAID CEnergy • Veolia • World Bank